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Antiparkinson agents possess excellent anticonvulsant properties against nerve agent-induced seizures by
exerting both cholinergic and glutamatergic antagonisms. It is important, however, that drugs used as
prophylactics not by themselves cause impairment of cognitive capability. The purpose of the present study
was to make a comparative assessment of potential cognitive effects of benactyzine (0.3 mg/kg), biperiden
(0.11 mg/kg), caramiphen (10 mg/kg), procyclidine (3 mg/kg), and trihexyphenidyl (0.12 mg/kg) separately
and each in combination with physostigmine (0.1 mg/kg). The results showed that benactyzine, caramiphen,
and trihexyphenidyl reduced rats' innate preference for novelty, whereas biperiden and procyclidine did not.
When benactyzine, caramiphen, and trihexyphenidyl were combined with physostigmine the cognitive
impairment disappeared. This counteracting effect, however, caused changes in locomotor and rearing
activities not seen by each drug alone. Acetylcholinesterase inhibitors and anticholinergics used as
prophylactics can offset each other, but exceptions are observed in a previous study when a very potent
anticholinergic (scopolamine) or a high dose of procyclidine still results in cognitive deficits in spite of
coadministration with physostigmine. Among the present drugs tested, procyclidine appears to be a robust
anticonvulsant with few cognitive side effects.

© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Nerve agents consist of a group of highly toxic organophosphates
that acts by irreversibly inhibiting acetylcholinesterase, the enzyme
that hydrolyzes acetylcholine. Accumulation of acetylcholine results
in excessive stimulation of muscarinic and nicotinic receptors. The
signs of poisoning are seen as hypersecretion, respiratory distress,
tremor, seizures/convulsions, coma, and death. Increased cholinergic
activity in the brain is probably related to the initial phase of seizures
(McDonough and Shih, 1997; Lallement et al., 1992), whereas sus-
tained seizures are probably associated with increased glutamatergic
activity leading to neuronal damage predominantly in the hippocam-
pus, amygdala, piriform cortex, and entorhinal cortex (McDonough
and Shih, 1997; Carpentier et al., 1991). Because it takes a higher dose
of anticonvulsants to terminate seizures induced by soman (pinacolyl
methylphosphonofluoridate) than by other classical nerve agents
(Shih and McDonough, 2000), soman is considered to be the most
relevant agent to be used in animal models to evaluate the anti-
convulsant potency of pharmacological agents.

Prophylactic treatment against nerve agents can be obtained by
shielding temporarily a fraction of the acetylcholinesterase from
irreversible inhibition together with the therapeutic treatment with
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an anticholinergic drug. For this purpose, a number of military forces
have based their medical therapy on pyridostigmine pretreatment to
prevent acetylcholine inhibition by nerve agents followed by the
immediate therapeutic treatment with atropine sulfate and an oxime
administered by an autoinjector. These drugs are meant to inhibit
muscarinic receptors and to reactivate any “unaged” enzyme, respec-
tively, following exposure to nerve agent (Aas, 2003). However, since
pyridostigmine does not readily cross the blood-brain barrier, physos-
tigmine that readily enters the brain, has been suggested as a possible
replacement. In studies of guinea pigs and rats, evidence has been
presented that effective prevention of soman-induced lethality can be
ensured by physostigmine in combination with scopolamine or
procyclidine (Kim et al., 2002; Choi et al., 2004; Myhrer et al., 2004b,
Philippens et al., 2000;Wetherell et al., 2002). Pyridostigmine combined
with caramiphen or benactyzine and trihexyphenidyl or with biperiden
has also been reported to provide efficacious pretreatment in soman-
poisoned rats (Bajgar, 2004; Kassa et al., 2003; Raveh et al., 2003).

The group of antiparkinson drugs including benactyzine, biper-
iden, caramiphen, procyclidine, and trihexyphenidyl (Gao et al., 1998;
Vargas et al., 1998) possesses potent anticonvulsant properties against
nerve agent-induced seizures, since these drugs exert both cholinergic
and glutamatergic antagonisms in mice and rats (Gao et al., 1998;
McDonough and Shih, 1995; Raveh et al., 2002). Antiparkinson agents
are therefore well suited as anticonvulsants against soman-evoked
seizures. Because seizures are associated with both lethality and brain
damage (Shih et al., 2003), it is very important to prevent the onset of
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seizures or terminate seizures within 20 min after onset to avoid
neuropathology (Lallement et al., 1994; McDonough et al., 1995). A
fixed dose of physostigmine (0.1 mg/kg) combined with various doses
of procyclidine (1–6 mg/kg) can effectively protect against soman
intoxication (1.3–2.0×LD50) in a dose-related manner (Myhrer et al.,
2004b). However, the higher the dose of procyclidine used, the more
pronounced the cognitive side effects in rats (Myhrer et al., 2004a).
Very low doses of physostigmine (0.015 and 0.03 mg/kg) in rats have
been shown to enhance memory in a passive avoidance task (Santucci
et al., 1989). However, the application of acetylcholine receptor
antagonists will result in the opposite effect. Both atropine and
scopolamine have convincingly been demonstrated to impair rats'
performance in Morris water maze and spontaneous alternation
(Myhrer, 2003). Furthermore, glutamatergic antagonists (MK-801,
ketamine) cause performance deficits in the latter behavioral tasks as
well as in radial maze and passive avoidance (Myhrer, 2003). Hence, a
crucial matter is whether the doses of prophylactics required for
protection against nerve agent-induced damage will impair cognitive
functions. The purpose of the present study was to make a com-
parative assessment of potential cognitive effects of benactyzine,
biperiden, caramiphen, procyclidine, and trihexyphenidyl (Experi-
ment 1) or each drug combined with physostigmine (Experiment 2).
The behavioral task employed was a novelty test that has proven
particularly sensitive in revealing cognitive dysfunctions following
selective disruptions of entorhinal projections (Myhrer, 1988, 1989).
Exploration of a discrete novel object is one form of inquisitive activity
frequently seen among rats. This activity appears as a strong
preference for novelty, the recognition of which is probably based
on polymodal sensory information (Berlyne, 1960). The rats were
tested in a modified version of the novelty test of Berlyne (1950)
consisting of three different sets of stimuli; visual/tactile, olfactory, or
visual only (Myhrer, 1988).

2. Methods

2.1. Animals

2.1.1. Experiment1
Forty-eight maleWistar rats from a commercial supplier (Møllegaard

Breeding Laboratories, Denmark) weighing 280–310 g when the
experiment started, served as subjects. The rats were randomly as-
signed to one of 6 groups (8 rats in each) and their group assignment
was unknown during testing. The various groups received i.p. injection
of either saline, benactyzine, biperiden, caramiphen, procyclidine, or
trihexyphenidyl. The ratswere housed individually and had free access
to commercial rat pellets andwater.With the novelty test used, reliable
results are dependent on emotionally stable animals. For this reason,
the rats were handled individually 7–10 days, being allowed to explore
a table top (80×60 cm) for 3min a day. The climatized (21 °C) vivarium
was illuminated from 0700 to 1900 h.

2.1.2. Experiment 2
Forty-eight male rats (280–310 g) served as subjects. The animals

were randomly assigned to the following treatment groups with 8 rats
in each: i.p. treatment with saline (×2), physostigmine combined with
either benactyzine, biperiden, caramiphen, procyclidine, or trihex-
yphenidyl. The rats were treated as described for Experiment 1.

The experiments were approved by the National Animal Research
Authority. A minimal number of animals were used, and all efforts
were made to avoid animal suffering according to the European
Communities Council Directive of 1986 (86/609/EEC).

2.2. Drug administration

Physostigmine salicylate, benactyzine, caramiphen edisylate, pro-
cyclidine hydrochloride, and trihexyphenidyl hydrochloride were
purchased from Sigma (St. Louis. MO, USA), and biperiden lact. was
purchased from Abbot (Solna, Sweden). All drugs were dissolved in
0.9% physiological saline and administered i.p. in the following doses:
physostigmine 0.1 mg/kg, benactyzine 0.3 mg/kg, biperiden 0.11 mg/
kg, caramiphen 10 mg/kg, procyclidine 3 mg/kg, and trihexyphenidyl
0.12 mg/kg. These doses have previously been reported to assure
anticonvulsant effects against soman when administered prophylac-
tically 20 or 30 min before the nerve agent (Capacio and Shih, 1991;
Kim et al., 2002; Myhrer et al., 2004b; Raveh et al., 2002; Shih et al.,
1991). Furthermore, the selected dose of physostigmine does not by
itself significantly affect the performance on the test used in this study
(Myhrer et al., 2004b). The drugs were given 20 min before each test
session (1 session a day for 3 days) with testing time of 20 min. When
physostigmine was combined with antiparkinson drugs (Experiment
2), the injections were given in rapid succession (physostigmine first).
Physiological saline was injected i.p. in a volume of 0.3 ml.

2.3. Apparatus

Behavioral testingwas carried out in a Plexiglas cage (54×33×20 cm)
previously described (Myhrer,1988). In brief, the floorwas divided in 18
equal squares (9×11 cm). Three identical aluminum cubes (5×5×5 cm)
were evenly distributed in the cage in fixed positions (the neutral
objects). Three other cubes made up the novel objects. One object only
differed from the neutral ones in that its top was uneven with tracks
(2mm) in itmaking up a square pattern (visual/tactile stimuli). Since the
rats could perceive the tracks or the squares (16 squares measuring
1.1×1.1 cm) by bodily contact, both tactile and visual sensory modalities
might be used. One was identical with the neutral ones, and a spot of
cheese (dia. 1.5 cm) was smeared on the side facing the experimenter
(olfactory stimulus). So-called Norwegian white cheese (Norvegia) that
hardly smells at all to humans was used. In the test cage, it was not
possible to detect the cheese visually. Onewas smaller than the neutrals,
(4.5×4.5×4.5 cm) and two sides were slightly uneven (visual stimulus).
All objects were painted light gray. The sound attenuated testing room
was provided with a fan producing white noise (52 dB).

2.4. Procedure

During adaptation, the rats were allowed to explore individually
the empty apparatus for 20 min. On the next day, the rats were run in
Session I. In Phase 1, the animals were tested for 5 min in the box with
three neutral objects present. The following behaviors were recorded:
number of seconds in contact with the objects, number of squares
traversed (locomotor activity), number of rearings, and duration of
grooming in seconds. Preference for novelty was based on the
difference between exploration of novel versus neutral objects, and
the mean time of contact with the two neutral objects was used. Then
the rats spent 10min in the home cage. In Phase 2, the rats were tested
again for 5min, and the neutral object in themiddle position had been
replaced by the novel object with uneven top. Changing position of
neutral object makes up a novelty in itself (Ennaceur et al., 1996).
During this period of time, the same measures as in Phase 1 were
made. Prior to testing of each rat the apparatus and objects were
carefully washed with Neodisher GK (Miele, Germany) dissolved in
water and allowed to dry. In Sessions II and III (test days 2 and 3), the
same procedurewas followed, and the novelty was represented by the
smell of cheese on one side of the cube and a smaller object,
respectively. Since changing the order of novelty presentation can lead
to different patterns of locomotor and rearing activities, a counter-
balanced order of testing was not used to control for accumulative
effects of drugs on activity measures. The same set of neutral cubes
was used after olfactory cues had properly been eliminated. Explora-
tion of an object was defined as directing the snout toward the object
at a distance of 1.5 cm or less. Bodily touch other than by the snoutwas
not considered as exploratory behavior. One observer who was



Table 1
Mean (±SEM) measures of exploratory behavior in seconds in novelty test in Experiment 1

Group N Differential time exploring Total time exploring

Session Session

I II III I II III

Ph 2 Ph 2 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2

Saline 8 5.1±0.8 14.9±2.4 12.6±4.0 21.0±2.9 15.0±2.1 15.8±3.7 23.0±5.0 11.2±2.7 20.1±6.6
Benactyzine 8 0.1a±0.3 3.6b±0.7 5.9±1.6 14.4±1.5 5.5±2.9 11.3±2.3 6.0a±1.4 9.8±1.7 8.4±2.0
Biperiden 8 3.3±1.9 12.4±2.8 7.6±2.3 13.4±2.7 10.9±4.1 8.0±2.0 16.0±2.3 9.4±3.0 12.5±3.8
Caramiphen 8 0.8±1.2 6.6a±1.7 1.8a±1.2 18.3±3.2 3.1±1.0 6.0±2.3 10.9±3.4 9.5±3.8 7.3±3.6
Procyclidine 8 3.8±1.3 10.9±1.7 11.6±1.5 13.4±1.5 10.3±2.5 8.9±1.7 17.0±3.9 11.4±3.0 14.5±2.7
Trihexyphenidyl 8 0.3a±0.6 16.4±2.4 3.4a±1.6 15.0±2.1 10.4±3.8 14.1±4.7 18.3±3.0 10.0±2.9 13.5±5.0

Ph = Phase. Significantly different from the saline group: apb0.05, bpb0.01.
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unaware of the rats' group assignment, recorded the data manually
without TV monitoring.

2.5. Statistics

Overall analyses were carried out with one-way analysis of
variance (ANOVA). Group comparisons were made with Newman–
Keuls post hoc test. Computations were made with Prism statistical
software program (GraphPad Software CA, USA).

3. Results

3.1. Experiment 1

Decreased preference for novelty was seen among the rats treated
with benactyzine, caramiphen, and trihexyphenidyl (Table 1). In Session
I (uneven top of novel object), ANOVA revealed a significant treatment
effect (F (5,42)=3.184, P=0.0159). The benactyzine and trihexyphenidyl
groups displayed reliably less preference for novelty than the saline
group (Pb0.05). In Session II (smell novelty), ANOVA showed a reliable
overall effect (F (5,42)=5.730, P=0.0004). Both the benactyzine group
and caramiphen group had a preference deficit relative to the saline and
trihexyphenidyl groups (Pb0.05). The benactyzine group also per-
formed poorer than the biperiden and procyclidine groups (Pb0.05). In
Session III (smaller object novelty), ANOVA revealed a significant
treatment effect (F (5,42)=3.727, P=0.0070). The caramiphen and
trihexyphenidyl groups explored the novel object reliably less than
the saline group (Pb0.05). The caramiphen group also deviated
significantly from the procyclidine group (Pb0.05).

The total time exploring objects also differed among groups
(Table 1). A reliable treatment effect was seen for Phase 2 in Session II
(F (5,42)=3.153, P=0.0166). The benactyzine group explored the
neutral objects significantly less than the saline-treated group
(Pb0.05).
Table 2
Mean (±SEM) measures of locomotor (squares) and rearing activities in novelty test in Expe

Group N Squares

Session

I II III

Ph1 Ph 2 Ph 1 Ph 2 Ph 1

Saline 8 87.3±11.6 61.6±16.2 87.1±12.7 49.9±10.9 86.3±13.0
Benactyzine 8 56.9±7.5 30.3±6.7 33.9b±7.2 19.9±5.2 35.9b±8.6
Biperiden 8 60.1±9.4 38.5±9.9 61.3±9.8 35.4±10.4 49.8a±9.6
Caramiphen 8 55.1±8.0 11.3a±4.3 18.1c±6.1 8.6b±3.2 24.3b±10.5
Procyclidine 8 93.8±8.7 37.6±7.1 51.1±9.3 32.4±7.3 46.1a±10.5
Trihexyphenidyl 8 82.1±10.1 54.3±14.7 72.5±13.4 36.9±8.4 69.1±7.6

Ph = Phase. Significantly different from the saline group: apb0.05, bpb0.01, cpb0.001.
As seen from Table 2, rats treated with drugs tended to display less
motor activity than the control animals. In Phase2 in Session I, significant
differences were observed among the groups (F (5,42)=2.773,
P=0.0298). The caramiphen group was reliably less active than the
saline group (Pb0.05). In Phase1 in Session II, a reliable overall effectwas
observed (F (5,42)=6.262, P=0.002). The benactyzine and caramiphen
groups displayed reduced activity relative to the saline and trihexyphe-
nidyl groups (Pb0.05). The caramiphen group was also less active than
the biperiden group (Pb0.05). In Phase 2 in Session II, ANOVA showed a
significant treatment effect (F (5,42)=3.173, P=0.0161). The caramiphen
group was reliably less active than the saline group (Pb0.01). In Phase 1
in Session III, a significant treatment effectwas revealed (F (5,42)=4.955,
P=0.0012). The benactyzine, biperiden, caramiphen, and procyclidine
groups displayed reliably less activity than the saline-treated group
(Pb0.05). The caramiphen group was also less active than the
trihexyphenidyl group (Pb0.05). In Phase 2 in Session III, ANOVA
showed a reliable treatment effect (F (5,42)=2.692, P=0.0338). The
group treated with caramiphen was significantly less active than the
saline group (Pb0.05).

The rearing activity also differed among thegroups (Table 2). In Phase
2 in Session I, a significant treatment effect was seen (F (5,42)=4.933,
P=0.0012). The caramiphen group exhibited reliably less rearing than
the saline group (Pb0.001). The caramiphen group also made signifi-
cantly less rearing than the benactyzine, biperiden, and trihexyphenidyl
groups (Pb0.05). In Phase 1 in Session II, ANOVA revealed a reliable
overall effect (F (5,42)=7.253, Pb0.0001). The benactyzine and carami-
phen groups displayed significantly less rearing than the saline group
(Pb0.05). The caramiphen group alsomade reliably less rearing than the
benactyzine, biperiden, procyclidine, and trihexyphenidyl groups
(Pb0.05). In Phase 2 in Session II, ANOVA showed a reliable treatment
effect (F (85,42)=3.495, P=0.0099). The caramiphen group displayed
significantly less rearing than the saline group (Pb0.01). In Phase 1 in
Session III, a reliable overall effect was seen (F (5,42)=7.734, Pb0.0001).
Both the benactyzine, biperiden, caramiphen, and procyclidine groups
riment 1

Rearings

Session

I II III

Ph 2 Ph 1 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2

63.6±12.3 24.0±1.6 17.3±2.4 24.9±2.7 15.0±3.0 27.4±3.0 19.6±3.9
26.9±10.3 18.3±1.9 11.6±1.9 15.0a±1.9 7.9±1.5 12.4b±2.5 10.3±3.0
25.3±9.3 17.1±2.1 12.4±3.0 21.3±3.3 10.5±2.8 17.8a±3.0 9.3±3.3
18.9a±8.9 16.8±2.2 3.9c±1.4 5.9c±1.7 3.8b±1.3 8.8c±2.6 6.4a±2.5
35.8±8.9 20.4±2.1 9.4±1.7 16.6±1.8 12.0±1.1 15.9a±1.6 12.8±2.5
33.3±7.2 21.8±0.6 14.9±2.2 19.9±2.8 11.5±2.0 23.6±2.0 12.0±2.0



Table 3
Mean (±SEM) measures of exploratory behavior in seconds in novelty test in Experiment 2

Group N Differential time exploring Total time exploring

Session Session

I II III I II III

Ph 2 Ph 2 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2

Saline 8 2.8±1.7 20.8±3.4 17.3±2.6 25.0±2.6 17.8±3.0 14.1±1.6 30.0±5.2 15.1±3.2 28.1±3.8
Phy+Benact 8 3.3±1.8 15.4±4.5 12.6±3.2 19.0±2.1 20.0±4.5 10.9±1.7 20.0±5.6 17.0±3.9 24.9±3.5
Phy+Biperi 8 2.1±0.9 21.1±5.8 9.2±2.3 8.9c±2.5 4.8±1.7 17.3±3.7 23.1±5.4 15.9±3.7 15.4±2.4
Phy+Caram 8 6.6±2.9 16.5±4.7 14.0±3.6 19.6±3.0 18.6±4.3 14.1±2.1 22.1±5.3 13.9±4.1 27.5±2.7
Phy+Procy 8 2.5±0.7 16.5±2.0 13.4±2.0 17.0±1.7 6.4±1.0 9.3±3.6 20.6±1.9 11.1±2.1 22.3±2.7
Phy+Trihex 8 2.3±1.9 21.5±4.5 15.7±3.2 8.9c±2.4 13.0±4.6 7.0±2.8 26.4±4.2 11.1±2.9 30.1±5.4

Ph = Phase, Phy = physostigmine, Benact = benactyzine, Biperi = biperiden, Caram = caramiphen, Procy = procyclidine, Trihex = trihexyphenidyl. Significantly different from the saline
group: cpb0.001.
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displayed significantly reduced rearing relative to the saline group
(Pb0.05). The benactyzine and caramiphen groups also performed
reliably less rearing than the trihexyphenidyl-treated rats (Pb0.05).
In Phase 2 in Session III, ANOVA showed a significant treatment
effect (F (5,42)=2.357, P=0.0467). The caramiphen group made
reliably less rearing than the saline group (Pb0.05).

3.2. Experiment 2

When physostigmine was combined with antiparkinson agents,
preference for novelty did not differ among the groups (Table 3).

The total time exploring objects differed slightly among the groups
(Table 3). ANOVA showed a significant treatment effect in Phase 1 in
Session I (F (5,42)=6.950,Pb0.0001). Both the physostigmine+biperiden
and physostigmine+trihexyphenidyl groups explored the neutral
objects reliably less than the saline group (Pb0.001). The physostig-
mine+biperiden and physostigmine+trihexyphenidyl groups also
explored significantly less than the physostigmine+benactyzine and
physostigmine+caramiphen groups (Pb0.05).

Some rats treated with combination of drugs tended to display
reduced locomotor activity (Table 4). In Phase 1 in Session I, ANOVA,
revealed a significant overall effect (F (5,42)=3.320, P=0.0129). The
physostigmine+trihexyphenidyl group showed reliably less motor
activity than the saline and physostigmine+benactyzine groups
(Pb0.05). In Phase 2 in Session I, a reliable treatment effectwas observed
(F (5,42)=6.315, P=0.0002). All groups treated with drugs except phy-
sostigmine+benactyzine displayed significantly less locomotor activity
than the saline group (Pb0.05). The physostigmine+biperiden, procy-
clidine, or trihexyphenidyl groups also displayed reducedmotor activity
relative to the physostigmine+benactyzine group (Pb0.05). In Phase 1 in
Session II, ANOVA showed a reliable overall effect (F (5,42)=4.041,
Table 4
Mean (±SEM) measures of locomotor (squares) and rearing activities in novelty test in Expe

Group N Squares

Session

I II III

Ph1 Ph 2 Ph 1 Ph 2 Ph 1

Saline 8 77.3±8.0 57.8±10.6 85.3±9.6 49.5±9.1 74.5±9.9
Phy+Benact 8 75.1±8.1 46.3±9.6 53.3±13.6 31.4±7.8 55.5±13.7
Phy+Biperi 8 56.4±9.9 20.3b±3.8 50.6±12.2 32.5±8.5 55.8±11.6
Phy+Caram 8 60.9±9.9 30.1a±5.7 47.1±8.8 27.8±6.2 51.9±9.9
Phy+Procy 8 62.3±5.5 16.6b±2.9 46.4±7.2 28.6±6.2 58.0±11.4
Phy+Trihex 8 36.8a±5.8 16.9b±4.5 23.5c±5.1 25.3±3.9 38.8±6.9

Ph = Phase. Phy = Physostigmine, Benact = benactyzine, Biperi = biperiden, Caram = caramiph
group: apb0.05, bpb0.01, cpb0.001.
P=0.0044). The physostigmine+trihexyphenidyl group exhibited sig-
nificantly less locomotor activity than the saline group (Pb0.001).

Table 4 shows the rearing activity among the groups. In Phase 1 in
Session I, ANOVA revealed a significant overall effect (F (5,42)=10.970,
Pb0.0001). The physostigmine+biperiden or trihexyphenidyl groups
made reliably less rearing than the saline group and the physostig-
mine+benactyzine, caramiphen, or procyclidine groups (Pb0.01). In
Phase 2 in Session I, a reliable treatment effect was found (F (5,42)=
5.872, P=0.0003). Relative to the saline group the groups treated with
physostigmine+biperiden, procyclidine, or trihexyphenidyl displayed
significantly reduced rearing activity (Pb0.05). The physostigmine+
biperiden group also made less rearing than the physostigmine+
benactyzine or caramiphen groups (Pb0.05). The physostigmine+
trihexyphenidyl group displayed reduced rearing relative to the
physostigmine+caramiphen group (Pb0.05). In Phase 1 in Session II,
ANOVA showed a significant overall effect (F (5,42)=5.830, P=0.0004).
All groups treated with drugs made reliably less rearing than the
saline group (Pb0.05). In Phase 2 in Session II, a reliable treatment
effect was seen (F (5,42)=2.912, P=0.0241). The physostigmine+
benactyzine, biperiden, or trihexyphenidyl groups exhibited sig-
nificantly reduced rearing activity compared with the saline group
(Pb0.05). In Phase 1 in Session III, ANOVA revealed a reliable treat-
ment effect (F (5,42)=4.730, P=0.0016). All groups treated with
pharmacological agents displayed reduced rearing relative to the
saline group (Pb0.05).

4. Discussion

The results from the present study demonstrated that some anti-
parkinson drugs like benactyzine, caramiphen, trihexyphenidyl can
exert marked cognitive side effects, but when physostigmine was
riment 2

Rearings

Session

I II III

Ph 2 Ph 1 Ph 2 Ph 1 Ph 2 Ph 1 Ph 2

58.6±7.6 23.0±1.5 16.4±2.4 24.9±3.0 16.8±3.0 25.3±3.1 19.8±3.2
42.8±7.1 16.9±1.3 12.1±1.6 14.6a±3.1 7.5a±1.7 13.1b±2.6 14.1±1.6
38.1±9.3 9.4c±2.0 3.8c±1.4 12.3a±3.1 8.4a±2.5 10.5b±2.3 8.8±1.8
35.4±6.1 19.4±2.1 13.5±1.8 14.8a±2.6 10.6±1.5 16.3a±2.9 15.0±2.0
30.4±7.2 18.3±1.0 8.1a±2.7 14.1a±1.5 11.3±1.9 15.6a±1.7 11.9±2.7
34.0±6.4 7.9c±2.4 5.8b±1.8 4.8c±1.7 7.5a±1.3 10.0b±2.6 11.3±2.9

en, Procy = procyclidine, Trihex = trihexyphenidyl. Significantly different from the saline
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coadministered with each of these antiparkinson agents, the cognitive
impairment vanished. Benactyzine, caramiphen, and trihexyphenidyl
reduced preference for novelty, whereas biperiden and procyclidine
did not. Furthermore, rats treated with caramiphen displayed pro-
nounced decline in locomotor and rearing activities (Experiment 1).
The combination of physostigmine and antiparkinson agents resulted
in normal preference for novelty, but physostigmine combined with
biperiden caused long-lasting decline in rearing activity. Physostig-
mine along with trihexyphenidyl produced reduction in both loco-
motor and rearing activities (Experiment 2).

It has been suggested that the behavioral side effects of carbamates
and anticholinergics might offset each other when they are used as
prophylactics to prevent nerve agent toxicity (Kim et al., 2002). This
may be the case as seen from the present study, provided that the
antagonism obtained by anticholinergics is completely equalized by
the cholinergic agonism of physostigmine. In a previous study
(Myhrer et al., 2004a), we found that the “agonistic” effect of phy-
sostigmine (0.1 mg/kg) is not sufficient to counteract cholinergic
antagonism if the anticholinergic is very potent (scopolamine) or a
high dose of procyclidine (6 mg/kg) is used. Additionally, if the per-
formance level of the control group turns out to be particularly high,
as in Session I in the study of Myhrer et al. (2004a), slight cognitive
impairment of combined carbamate and anticholinergic may be
revealed. In the latter study, it was shown that physostigmine (0.1 mg/
kg) alone does not affect preference for novelty or locomotor activity.
Physostigmine (0.1 mg/kg) inhibits 67% of acetylcholinesterase in the
blood of rats 30min after injection (Lennox et al., 1985). The half-life of
physostigmine is 17 min in plasma and 16 min in the brain of rats.
Declining concentration of physostigmine is seen up to 45 min in the
brain (Somani and Khalique, 1986). In the present novelty task, the
testing was terminated 40 min after injection of physostigmine and
antiparkinson agents. A crucial issue is how physostigmine is able to
antagonize receptor blocking effects of anticholinergics by increasing
the level of acetylcholine and thus reduce or prevent cognitive
impairment. This apparently subtle balance is probably attained in
different ways for other relevant acetylcholinesterase inhibitors used
as pretreatment against nerve agents, such as donepezil, huperzine,
and galantamine.

Both cholinergic and glutamatergic antagonists produce cognitive
malfunction in a number of behavioral tasks (Myhrer, 2003). Hence, it
appears somewhat intriguing that coadministration with physostig-
mine completely compensated for the cognitive deficits caused by
some antiparkinson drugs when administered alone. This finding
might suggest that the deleterious impact on behavior was most
prominently exerted by cholinergic antagonism. Rats injectedwith the
glutamatergic NMDA antagonist HA-966 display reduced preference
for novelty in the present task (Myhrer, 1999). However, impairment
of preference for novelty that has spontaneously recovered 2–3 weeks
after a combination of 2 denervations in the temporal region (fiber
connections between temporal and entorhinal cortices plus hippo-
campal perforant path) is more effectively reactivated by atropine
than HA-966 (Myhrer, 1999). Normal performance in the present
novelty task might potentially be more vulnerable to cholinergic than
glutamatergic antagonism.

Benactyzine, caramiphen, and trihexyphenidyl all attenuate the
ability to recognize environmental change. Because the deficit was
compensated for by cholinergic “agonism” (physostigmine), the nature
of the deficit is probablycholinergic. Cholinergic activity has been related
to attentional processes (Himmelheber et al., 2000). Thus, the cognitive
impairment observed may be associated with reduced ability to make
attentional shift. The total time exploring objects was not affected
(except for 1 instance in rats treated with benactyzine), suggesting that
the rats indiscriminately paid attention to all objects. The benactyzine
group occasionally displayed decreased levels of locomotor and rearing
activities. In a previous study, doses between 0.1 and 5.6 mg/kg of
benactyzine do not change locomotor activity in rats (Sipos et al., 1999).
When benactyzine was combined with physostigmine in the present
study, a decline in rearing activity was observed. Following injection of
caramiphen a pronounced and long-lasting decrease in both locomotor
and rearing activitieswas seen. This reduction inmobilitymay be related
to the finding of ataxia and stereotyped behavior in rats treated with
15 mg/kg of caramiphen (Szekély et al., 1994). The present caramiphen
rats displayed fear and became tense when lifted in hand. Both fear and
pronounced level of immobility disappeared when caramiphen was
administered along with physostigmine. Trihexyphenidyl did not result
in any changes in locomotor or rearing activity. Increased locomotor
activity has been reported for rats injected with trihexyphenidyl doses
above 5 mg/kg (Sipos et al., 1999). However, when trihexyphenidyl was
combinedwithphysostigmine, amarkeddecrease in rearing activitywas
seen in the present study.

Biperiden andprocyclidine did not affect preference for novelty and
only rarely reduced locomotor and rearing activities. High doses of
biperiden (N5 mg/kg) produce increased locomotor activity, whereas
high doses of procyclidine do not (Sipos et al., 1999). However, when
procyclidine is administered in a dose of 6mg/kg in the present novelty
test, reduced preference for novelty is seen for all sessions along with
moderately decreased levels of locomotor and rearing activities
(Myhrer et al., 2004a). Reduced activity as expressed in locomotor
and rearing may reflect declined interest in the surroundings.

The antiparkinson drugs share common anticonvulsant properties
(cf. Introduction), but their side effects, as revealed in the present study,
greatly differ when comparable and relatively low anticonvulsant doses
are used. The combinationwith physostigmine further emphasizes their
subtle diversity of effects. In a meta-analysis of transmitter systems and
cognition in four behavioral tasks, it was concluded that tests based on
innate responses (as in spontaneous alternation) appear to be more
sensitive to drug-inducedmalfunctions than tests requiring long-lasting
acquisition procedures (as radial maze) (Myhrer, 2003). Hence, the
present test based on acute responding in terms of innate preference for
noveltymay be particularly sensitive in revealing cognitive dysfunctions.

The antiparkinson agents used in the present study have all been
shown to exert good anticonvulsant efficacy against soman-induced
seizures in rats when combined with pyridostigmine or physostig-
mine (Bajgar, 2004; Kassa et al., 2003; Kim et al., 2002; Myhrer et al.,
2004b; Raveh et al., 2003). Only biperiden and procyclidine did not
impair preference for novelty. However, biperiden caused more
pronounced decline in rearing activity than procyclidine when these
drugs were combined with physostigmine. Hence, procyclidine may
be well suited for combinations with acetylcholinesterase inhibitors.

Slight cognitive impairment of effective prophylactic agents is
probably inevitable. One way to circumvent the problem is to use
moderate doses of prophylactics to avoid adverse impact on cognitive
functions, because insufficient prophylaxis with physostigmine and
procyclidine can be compensated for by adjunct treatment with
scopolamine within 3 min or diazepam and pentobarbital within
15 min after seizure onset (Myhrer et al., 2004b). Procyclidine turns
out to be a potent anticonvulsant with few or no cognitive side effects
when used inmoderate doses (Galbicka et al., 2001; Sipos et al., 2001).
By testing anticonvulsant efficacy of microinfusions of antiparkinson
agents into the seizure controlling region area tempestas shows that
only procyclidine and caramiphen cause reliable effects (Myhrer et al.,
2008). However, caramiphen appears to be associated with marked
side effects as seen in this and a previous study (Szekély et al., 1994).
To equalize cognitive side effects of potent anticonvulsants by use of
acetylcholinesterase inhibitors is not recommendable, because subtle
adjustments for differences in half-life would be required.

In conclusion, only biperiden and procyclidine did not reduce
preference for novelty, whereas the cognitive impairment produced by
benactyzine, caramiphen, and trihexyphenidyl could be counteracted
by coadministration with physostigmine. Collectively, procyclidine
turns out to be a robust anticonvulsant with few cognitive side effects
either alone or in combination with physostigmine.
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